September 04, 2018 Volume 14 Issue 33

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Overhung load adaptors provide load support and contamination protection

Overhung load adaptors (OHLA) provide both overhung radial and axial load support to protect electrified mobile equipment motors from heavy application loads, extending the lifetime of the motor and alleviating the cost of downtime both from maintenance costs and loss of production. They seal out dirt, grime, and other contaminants too. Zero-Max OHLAs are available in an extensive offering of standard models (including Extra-Duty options) for typical applications or customized designs.
Learn more.


Why choose electric for linear actuators?

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Get this informative e-book. (No registration required)


New AC hypoid inverter-duty gearmotors

Bodine Electric Company introduces 12 new AC inverter-duty hypoid hollow shaft gearmotors. These type 42R-25H2 and 42R-30H3 drives combine an all-new AC inverter-duty, 230/460-VAC motor with two hypoid gearheads. When used with an AC inverter (VFD) control, these units deliver maintenance-free and reliable high-torque output. They are ideal for conveyors, gates, packaging, and other industrial automation equipment that demands both high torque and low power consumption from the driving gearmotor.
Learn more.


Next-gen warehouse automation: Siemens, Universal Robots, and Zivid partner up

Universal Robots, Siemens, and Zivid have created a new solution combining UR's cobot arms with Siemens' SIMATIC Robot Pick AI software and Zivid's 3D sensors to create a deep-learning picking solution for warehouse automation and intra-logistics fulfillment. It works regardless of object shape, size, opacity, or transparency and is a significant leap in solving the complex challenges faced by the logistics and e-commerce sectors.
Read the full article.


Innovative DuoDrive gear and motor unit is UL/CSA certified

The DuoDrive integrated gear unit and motor from NORD DRIVE-SYSTEMS is a compact, high-efficiency solution engineered for users in the fields of intralogistics, pharmaceutical, and the food and beverage industries. This drive combines a IE5+ synchronous motor and single-stage helical gear unit into one compact housing with a smooth, easy-to-clean surface. It has a system efficiency up to 92% and is available in two case sizes with a power range of 0.5 to 4.0 hp.
Learn more.


BLDC flat motor with high output torque and speed reduction

Portescap's 60ECF brushless DC slotted flat motor is the newest frame size to join its flat motor portfolio. This 60-mm BLDC motor features a 38.2-mm body length and an outer-rotor slotted configuration with an open-body design, allowing it to deliver improved heat management in a compact package. Combined with Portescap gearheads, it delivers extremely high output torque and speed reduction. Available in both sensored and sensorless options. A great choice for applications such as electric grippers and exoskeletons, eVTOLs, and surgical robots.
Learn more and view all the specs.


Application story: Complete gearbox and coupling assembly for actuator system

Learn how GAM engineers not only sized and selected the appropriate gear reducers and couplings required to drive two ball screws in unison using a single motor, but how they also designed the mounting adapters necessary to complete the system. One-stop shopping eliminated unnecessary components and resulted in a 15% reduction in system cost.
Read this informative GAM blog.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


Telescoping linear actuators for space-constrained applications

Rollon's new TLS telescoping linear actuators enable long stroke lengths with minimal closed lengths, which is especially good for applications with minimal vertical clearance. These actuators integrate seamlessly into multi-axis systems and are available in two- or three-stage versions. Equipped with a built-in automated lubrication system, the TLS Series features a synchronized drive system, requiring only a single motor to achieve motion. Four sizes (100, 230, 280, and 360) with up to 3,000-mm stroke length.
Learn more.


Competitively priced long-stroke parallel gripper

The DHPL from Festo is a new generation of pneumatic long-stroke grippers that offers a host of advantages for high-load and high-torque applications. It is interchangeable with competitive long-stroke grippers and provides the added benefits of lighter weight, higher precision, and no maintenance. It is ideal for gripping larger items, including stacking boxes, gripping shaped parts, and keeping bags open. It has high repetition accuracy due to three rugged guide rods and a rack-and-pinion design.
Learn more.


Extend your range of motion: Controllers for mini motors

FAULHABER has added another extremely compact Motion Controller without housing to its product range. The new MC3603 controller is ideal for integration in equipment manufacturing and medical tech applications. With 36 V and 3 A (peak current 9 A), it covers the power range up to 100 W and is suitable for DC motors with encoder, brushless drives, or linear motors.
Learn more.


When is a frameless brushless DC motor the right choice?

Frameless BLDC motors fit easily into small, compact machines that require high precision, high torque, and high efficiency, such as robotic applications where a mix of low weight and inertia is critical. Learn from the experts at SDP/SI how these motors can replace heavier, less efficient hydraulic components by decreasing operating and maintenance costs. These motors are also more environmentally friendly than others.
View the video.


Tiny and smart: Step motor with closed-loop control

Nanotec's new PD1-C step motor features an integrated controller and absolute encoder with closed-loop control. With a flange size of merely 28 mm (NEMA 11), this compact motor reaches a max holding torque of 18 Ncm and a peak current of 3 A. Three motor versions are available: IP20 protection, IP65 protection, and a motor with open housing that can be modified with custom connectors. Ideal for applications with space constraints, effectively reducing both wiring complexity and installation costs.
Learn more.


Closed loop steppers drive new motion control applications

According to the motion experts at Performance Motion Devices, when it comes to step motors, the drive technique called closed loop stepper is making everything old new again and driving a burst of interest in the use of two-phase step motors. It's "winning back machine designers who may have relegated step motors to the category of low cost but low performance."
Read this informative Performance Motion Devices article.


Intelligent compact drives with extended fieldbus options

The intelligent PD6 compact drives from Nanotec are now available with Profinet and EtherNet/IP. They combine motor, controller, and encoder in a space-saving package. With its 80-mm flange and a rated power of 942 W, the PD6-EB is the most powerful brushless DC motor of this product family. The stepper motor version has an 86-mm flange (NEMA 34) and a holding torque up to 10 Nm. Features include acceleration feed forward and jerk-limited ramps. Reduced installation time and wiring make the PD6 series a highly profitable choice for machine tools, packaging machines, or conveyor belts.
Learn more.


New motion control strategy helps reap maximum power from wind farms

Every two-and-a-half hours, a new wind turbine rises in the U.S. In 2016, wind provided 5.6 percent of all electricity produced, more than double the amount generated by wind in 2010, but still a far cry from its potential.

A team of researchers from The University of Texas at Dallas (UT Dallas) has developed a new way to extract more power from the wind. This approach has the potential to increase wind power generation significantly, with a consequent increase in revenue. Numerical simulations performed at the Texas Advanced Computing Center (TACC) indicate potential increases of up to 6 to 7 percent.

According to the researchers, a 1 percent improvement applied to all wind farms in the nation would generate the equivalent of $100 million in value. This new method, therefore, has the potential to generate $600 million in added wind power nationwide.

The team reported their findings in Wind Energy in December 2017 and Renewable Energy in December 2017.

The December 2017 cover image of Wind Energy was produced using the Stampede2 supercomputer at the Texas Advanced Computing Center. [Credit: Christian Santoni, Kenneth Carrasquillo, Isnardo Arenas-Navarro, and Stefano Leonardi, University of Texas at Dallas]

 

 

 

 

In the branch of physics known as fluid dynamics, a common way to model turbulence is through large eddy simulations. Several years ago, Stefano Leonardi and his research team created models that can integrate physical behavior across a wide range of length scales -- from turbine rotors 100 m long, to centimeters-thick tips of a blades -- and predict wind power with accuracy using supercomputers.

"We developed a code to mimic wind turbines, taking into account the interference between the wake of the tower and the nacelle (the cover that houses all of the generating components in a wind turbine) with the wake of the turbine rotor," said Leonardi, associate professor of mechanical engineering and an author on the Wind Energy paper, which was selected for the cover.

Beyond the range of length scales, modeling the variability of wind for a given region at a specific time is another challenge. To address this, the team integrated their code with the Weather Research and Forecasting Model (WRF), a leading weather prediction model developed at the National Center for Atmospheric Research.

"We can get the wind field from the North American Mesoscale Model on a coarse grid, use it as an input for five nested domains with progressively higher resolution, and reproduce with high fidelity the power generation of a real wind farm," Leonardi said.

The growing power of computers allows Leonardi and his team to accurately model the wind field on a wind farm and the power production of each single turbine. Testing their model's results against data from a wind farm in North Texas, they saw a 90 percent agreement between their predictions and the turbine's efficiency. They will present their results at Torque 2018, a major wind energy research conference.

Taking the turbulence out of the optimization control algorithm
Wind doesn't simply flow smoothly in one direction. It contains turbulence and wakes that are magnified when turbines are grouped together as they are on a wind farm.

Wake interactions lead to losses of up to 20 percent of annual production, according to the U.S. Department of Energy. Understanding how turbulence impacts energy generation is important to adjust the behavior of the turbines in real time to reap maximum power.

Using their modeling capabilities, they tested control algorithms that are used to manage the operation of dynamic systems at wind farms. This included the control algorithms known as "extremum seeking control," a model-free way of getting the best performance out of dynamic systems when only limited knowledge of the system is known.

"Many thought it would not be possible to use this approach because of turbulence and the fact that it provides a situation where turbines are changing all the time," Leonardi said. "But we did a huge number of simulations to find out a way to filter turbulence out of the control scheme. This was the major challenge."

With extremum seeking control, the system increases and reduces the rotational speed of a spinning turbine blade, all the while measuring the power, and calculating the gradient. This is repeated until the controller finds the optimal operating speed.

"The important thing is that the control algorithm does not rely on a physics-based model," Leonardi said. "There are many uncertainties in a real wind farm, so you cannot model everything. The extremum seeking control can find the optimum no matter if there is erosion or icing on the blades. It's very robust and works despite uncertainties in the system."

Simulating the wind
To test their new approach, the team ran virtual wind experiments using supercomputers at the TACC, including Stampede2 and Lonestar5 -- two of the most powerful in the world. They were able to use these systems through the University of Texas Research Cyberinfrastructure (UTRC) initiative, which, since 2007, has provided researchers at any of the University of Texas System's 14 institutions access to TACC's resources, expertise, and training.

Access to powerful supercomputers is important because wind turbines are expensive to build and operate, and few wind research facilities are available to researchers.

"The benefits of using high-performance computing to create a virtual platform for doing analyses of proposed solutions for wind energy are enormous," said Mario Rotea, professor of mechanical engineering at UT Dallas, and site director of the National Science Foundation-supported Wind-Energy Science, Technology and Research (WindSTAR) Industry-University Cooperative Research Center (IUCRC). "The more we can do with computers, the less we have to do with testing, which is a big part of the costs. This benefits the nation by lowering the cost of energy."

While the application of extremum seeking control to wind farms is yet to be field tested, the UT Dallas team already applied the method to a single turbine at the National Renewable Energy Laboratory (NREL).

"The NREL test gave us experimental data supporting the value of extremum seeking control for wind power maximization," said Rotea. "The experimental results show that extremum seeking control increases the power capture by 8 to 12 percent relative to a baseline controller."

Given the encouraging experimental and computational results, the UT Dallas team is planning an experimental campaign involving a cluster of turbines in a wind farm.

Collaborations and next steps
The development of the fluid dynamics model for wind turbines was part of an international collaboration between four U.S. institutions (Johns Hopkins University, UT Dallas, Texas Tech, and Smith College) and three European institutions (Technical University of Denmark, École polytechnique fédérale de Lausanne, and Katholieke Universiteit Leuven) funded by the National Science Foundation.

Through the WindSTAR center, they collaborate with nine leading wind energy companies and equipment manufacturers. These companies are interested in adopting or commercializing the work.

"The members of our center do not have access to a lot of horsepower in terms of HPC (high-performance computing)," said Rotea. "The computers at TACC are an asset for us and give us a competitive advantage over other groups. In terms of solving actual problems, we create control systems that they may incorporate, or they may use HPC to develop new tools for forecasting wind resources or determine if there are turbines that are not performing."

In addition to developing the new turbulence algorithms and control strategies, members of the WindSTAR team have introduced methods to predict accurate results on less-powerful computers (work that appeared in the March 2018 issue of Wind Energy) and to determine how closely to place turbines to maximize profits, depending on the cost of land (presented at the 2018 Wind Symposium).

The long-term effects of the work go beyond the theoretical.

"The research allows us to optimize wind energy power production and increase the penetration of renewable energy in the grid," Leonardi said. "There will be more power generated by the same machines because we understand more about the flow physics in a wind farm, and for the same land use and deployment, we can get more energy."

Source: The University of Texas at Dallas

Published September 2018

Rate this article

[New motion control strategy helps reap maximum power from wind farms]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2018 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy